When spin was first discovered in 1922 by Otto Stern and Walther Gerlach, however, their experiments indicated that the intrinsic angular momentum, or spin, of a particle such as an electron was quantized i.e. it could only take certain discrete values. The spin of composite particles (such as protons, neutrons and atomic nuclei) is just the sum of the spins and orbital angular momentum of the constituent particles, and is therefore subject to the same quantization conditions. Spin is therefore a completely quantum mechanical property of a particle, and cannot be explained in any way by classical physics.
|
The significance of this distinction for quantum theory is that the probability waves of bosons “flip” or invert before they interfere with each other, which effectively leads to their more “gregarious” nature, which in turn can lead to collective behaviour like that of lasers, superfluids and superconductors. Fermions, however, do not flip their probability waves, which, among other implications, leads to their “unsociable” nature. Thus, the spins of particles have to be added together very carefully using special rules for addition of angular momentum in quantum mechanics.
This discussion of the property of spin leads us to one of the most important principles in quantum physics, the Pauli exclusion principle (formulated by Wolfgang Pauli in 1925), which states that no two identical fermions may occupy the same quantum state simultaneously (although two electrons, for example, may acquire opposite spin in order to differentiate their quantum states). Another way of stating the principle is that no two fermions in a quantum system can have the same values of all four quantum numbers at any given time. This principle effectively explains the continued existence of very high density white dwarf stars, but also the very existence of different types of atoms in the universe and the large-scale stability and bulk of matter.
|
Actually, more recent research has yielded a more accurate “refined” Bohr model of the atom with each energy level composed of a certain number of sub-shells (named s, p, d and f) which can each hold only a certain number of electrons. For instance, the s sub-shell can only hold 2 electrons, the p sub-shell can hold 6, the d sub-shell can hold 10 and the f sub-shell can hold 14. The number of available sub-shells increases as the energy level increases, so that successive shells can hold a total of 2, 8, 18 and 32 electrons.
|
It also explains the existence of the different atoms in the periodic table of elements and the sheer variety of the universe around us. For example, when an atom gains a new electron, it always goes into the lowest energy state available (i.e. the outermost shell). Two atoms with “closed” shells find they cannot form a chemical bond with each other because the electrons in one atom find no available quantum states in the other which it can occupy. So, the arrangement of electrons, particularly of the electrons in the outermost shell, also affects the chemical properties of an element and how atoms are able to bond and combine with other atoms (the basis of chemistry), and therefore the way in which molecules interact to form gases, liquids or solids, and how they aggregate themselves in living organisms.
Another effect of the Pauli exclusion principle is that, if two identical particles are forced (for instance, by an extremely strong gravitational force) to try to have the same quantum numbers, they will respond with a repelling outward force, known as "degeneracy pressure" or "Pauli repulsion". A type of star called a degenerate white dwarf is held up entirely by this force.
No comments:
Post a Comment