Any even power of i..........will always be real................and it will always be either a neg 1.......or 1...............
Powers of the imaginary unit
Learn how to simplify any power of the imaginary unit i. For example, simplify i²⁷ as -i.
We know that
i=√−1i, equals, square root of, minus, 1, end square root and that
i2=−1i, start superscript, 2, end superscript, equals, minus, 1.
But what about
i3i, start superscript, 3, end superscript?
i4i, start superscript, 4, end superscript? Other integer powers of
ii? How can we evaluate these?
Finding i3i, start superscript, 3, end superscript and i4i, start superscript, 4, end superscript
The properties of exponents can help us here! In fact, when calculating powers of
ii, we can apply the properties of exponents that we know to be true in the real number system, so long as the exponents are integers.
With this in mind, let's find
i3i, start superscript, 3, end superscript and
i4i, start superscript, 4, end superscript.
We know that
i3=i2⋅ii, start superscript, 3, end superscript, equals, i, start superscript, 2, end superscript, dot, i. But since
i2=−1i, start superscript, 2, end superscript, equals, minus, 1, we see that:
i3=i2⋅i=(−1)⋅i=−i
Similarly
i4=i2⋅i2i, start superscript, 4, end superscript, equals, i, start superscript, 2, end superscript, dot, i, start superscript, 2, end superscript. Again, using the fact that
i2=−1i, start superscript, 2, end superscript, equals, minus, 1, we have the following:
i4=i2⋅i2=(−1)⋅(−1)=1
Let's keep this going! Let's find the next
44 powers of
ii using a similar method.
i5=i4⋅i =1⋅i=iProperties of exponentsSince i4=1
i6=i4⋅i2=1⋅(−1)=−1Properties of exponentsSince i4=1 and i2=−1
i7=i4⋅i3=1⋅(−i)=−iProperties of exponentsSince i4=1 and i3=−i
i8=i4⋅i4 =1⋅1=1Properties of exponentsSince i4=1
The results are summarized in the table.
i1i, start superscript, 1, end superscript | i2i, start superscript, 2, end superscript | i3i, start superscript, 3, end superscript | i4i, start superscript, 4, end superscript | i5i, start superscript, 5, end superscript | i6i, start superscript, 6, end superscript | i7i, start superscript, 7, end superscript | i8i, start superscript, 8, end superscript |
istart color blueD, i, end color blueD | −1start color greenD, minus, 1, end color greenD | −istart color purpleD, minus, i, end color purpleD | 1start color goldD, 1, end color goldD | istart color blueD, i, end color blueD | −1start color greenD, minus, 1, end color greenD | −istart color purpleD, minus, i, end color purpleD | 1start color goldD, 1, end color goldD |
An emerging pattern
From the table, it appears that the powers of
ii cycle through the sequence of
istart color blueD, i, end color blueD,
−1start color greenD, minus, 1, end color greenD,
−istart color purpleD, minus, i, end color purpleD and
1start color goldD, 1, end color goldD.
Using this pattern, can we find
i20i, start superscript, 20, end superscript? Let's try it!
The following list shows the first
2020 numbers in the repeating sequence.
spaceistart color blueD, i, end color blueD,
−1start color greenD, minus, 1, end color greenD,
−istart color purpleD, minus, i, end color purpleD,
1start color goldD, 1, end color goldD,
istart color blueD, i, end color blueD,
−1start color greenD, minus, 1, end color greenD,
−istart color purpleD, minus, i, end color purpleD,
1start color goldD, 1, end color goldD,
istart color blueD, i, end color blueD,
−1start color greenD, minus, 1, end color greenD,
−istart color purpleD, minus, i, end color purpleD,
1start color goldD, 1, end color goldD,
istart color blueD, i, end color blueD,
−1start color greenD, minus, 1, end color greenD,
−istart color purpleD, minus, i, end color purpleD,
1start color goldD, 1, end color goldD,
istart color blueD, i, end color blueD,
−1start color greenD, minus, 1, end color greenD,
−istart color purpleD, minus, i, end color purpleD,
1start color goldD, 1, end color goldD
According to this logic,
i20i, start superscript, 20, end superscript should be equal to
1start color goldD, 1, end color goldD. Let's see if we can support this by using exponents. Remember, we can use the properties of exponents here just like we do with real numbers!
i20=(i4)5=(1)5=1Properties of exponentsi4=1Simplify
Either way, we see that
i20=1i, start superscript, 20, end superscript, equals, 1.
Suppose we now wanted to find
i138i, start superscript, 138, end superscript. We could list the sequence
istart color blueD, i, end color blueD,
−1start color greenD, minus, 1, end color greenD,
−istart color purpleD, minus, i, end color purpleD,
1start color goldD, 1, end color goldD,... out to the
138th138, start superscript, t, h, end superscript term, but this would take too much time!
Notice, however, that
i4=1i, start superscript, 4, end superscript, equals, 1,
i8=1i, start superscript, 8, end superscript, equals, 1,
i12=1i, start superscript, 12, end superscript, equals, 1, etc., or, in other words, that
ii raised to a
multiple of 44 is
11.
We can use this fact along with the properties of exponents to help us simplify
i138i, start superscript, 138, end superscript.
Example
Simplify
i138i, start superscript, 138, end superscript.
Solution
While
138138 is not a multiple of
44, the number
136136 is! Let's use this to help us simplify
i138i, start superscript, 138, end superscript.
i138=i136⋅i2=(i4⋅34)⋅i2=(i4)34⋅i2=(1)34⋅i2=1⋅−1=−1Properties of exponents136=4⋅34Properties of exponentsi4=1i2=−1
So
i138=−1i, start superscript, 138, end superscript, equals, minus, 1.
Now you might ask why we chose to write
i138i, start superscript, 138, end superscript as
i136⋅i2i, start superscript, 136, end superscript, dot, i, start superscript, 2, end superscript.
Well, if the original exponent is not a multiple of
44, then finding the closest multiple of
44 less than it allows us to simplify the power down to
ii,
i2i, start superscript, 2, end superscript, or
i3i, start superscript, 3, end superscript just by using the fact that
i4=1i, start superscript, 4, end superscript, equals, 1.
No comments:
Post a Comment