Other formulas for the eccentricity of an ellipse are listed in the article on eccentricity of conic sections. Formulas for the eccentricity of an ellipse that is expressed in the more general quadratic form are described in the article dedicated to conic sections.
Directrix[edit]
Each focus F of the ellipse is associated with a line parallel to the minor axis called a directrix. Refer to the illustration on the right, in which the ellipse is centered at the origin. The distance from any point P on the ellipse to the focus F is a constant fraction of that point's perpendicular distance to the directrix, resulting in the equality e = PF/PD. The ratio of these two distances is the eccentricity of the ellipse. This property (which can be proved using the Dandelin spheres) can be taken as another definition of the ellipse.Besides the well-known ratio e = f/a, where f is the distance from the center to the focus and a is the distance from the center to the farthest vertices (most sharply curved points of the ellipse), it is also true that e = a/d, where d is the distance from the center to the directrix.
No comments:
Post a Comment