Triangles with these angles are the only possible right triangles that are also isosceles triangles in Euclidean geometry. However, in spherical geometry and hyperbolic geometry, there are infinitely many different shapes of right isosceles triangles.
30°–60°–90° triangle[edit]
This is a triangle whose three angles are in the ratio 1 : 2 : 3 and respectively measure 30° (π/6), 60° (π/3), and 90° (π/2). The sides are in the ratio 1 : √3 : 2.The proof of this fact is clear using trigonometry. The geometric proof is:
- Draw an equilateral triangle ABC with side length 2 and with point D as the midpoint of segment BC. Draw an altitude line from A to D. Then ABD is a 30°–60°–90° triangle with hypotenuse of length 2, and base BD of length 1.
- The fact that the remaining leg AD has length √3 follows immediately from the Pythagorean theorem.
No comments:
Post a Comment