Saturday, December 26, 2015

A negative exponent "flips it"...............here are some rules........




Exponent rules

Exponent rules, laws of exponent and examples.

What is an exponent

The base a is raised to the power of n is equal to the multiplication of a, n times:
a n = × a × ... × a
                    n times
a is the base and n is the exponent.

Examples

31 = 3
32 = 3 × 3 = 9
33 = 3 × 3 × 3 = 27
34 = 3 × 3 × 3 × 3 = 81
35 = 3 × 3 × 3 × 3 × 3 = 243

Exponents rules and properties

Rule nameRuleExample
Product rulesa n · a m = a n+m23 · 24 = 23+4 = 128
a n · b n = (· b) n32 · 42 = (3·4)2 = 144
Quotient rulesa n / a m = a n-m25 / 23 = 25-3 = 4
a n / b n = (/ b) n43 / 23 = (4/2)3 = 8
Power rules(bn)m = bn·m(23)2 = 23·2 = 64
bnm = b(nm)232 = 2(32)= 512
m√(bn) = b n/m2√(26) = 26/2 = 8
b1/n = nb81/3 = 38 = 2
Negative exponentsb-n = 1 / bn2-3 = 1/23 = 0.125
Zero rulesb0 = 150 = 1
0n = 0 , for n>005 = 0
One rulesb1 = b51 = 5
1n = 115 = 1
Minus one rule(-1)5 = -1
Derivative rule(xn)n·x n-1(x3)= 3·x3-1
Integral rule xndx = xn+1/(n+1)+C x2dx = x2+1/(2+1)+C

Exponents product rules

Product rule with same base

an · am = an+m
Example:
23 · 24 = 23+4 = 27 = 2·2·2·2·2·2·2 = 128

Product rule with same exponent

an · bn = (· b)n
Example:
32 · 42 = (3·4)2 = 122 = 12·12 = 144

Exponents quotient rules

Quotient rule with same base

an / am = an-m
Example:
25 / 23 = 25-3 = 22 = 2·2 = 4

Quotient rule with same exponent

an / bn = (/ b)n
Example:
43 / 23 = (4/2)3 = 23 = 2·2·2 = 8

Exponents power rules

Power rule I

(an) m = a n·m
Example:
(23)2 = 23·2 = 26 = 2·2·2·2·2·2 = 64

Power rule II

a nm a (nm)
Example:
232 = 2(32= 2(3·3) = 29 = 2·2·2·2·2·2·2·2·2 = 512

Power rule with radicals

m√(a n) = a n/m
Example:
2√(26) = 26/2 = 23 = 2·2·2 = 8

Negative exponents rule

b-n = 1 / bn
Example:
2-3 = 1/23 = 1/(2·2·2) = 1/8 = 0.125

No comments:

Post a Comment