A 15 year old or so F Gauss saw a pattern in the distribution of primes.......while a "good ball park figure"..........if that wasn't a code.......I don't know what would be......but anyways...............it was overall a decent average......but locally irregular..............while the denominator goes up by one..............the fraction goes down.............b/c it is a inverse relationship.............1/4 is smaller numerically than 1/2..............1/2 = 0.5 and 1/4 = 0.25....................50 cents is more than 25 cents.................................and while the denominator goes up (the number on the bottom).........uniformly one fraction to the next..........by ones...............the values go down.................erratically.............
Table of π(x), x / log x, and li(x)[edit]
The table compares exact values of
π(x) to the two approximations
x / log x and
li(x). The last column,
x / π(x), is the average
prime gap below
x.
x | π(x) | π(x) − x/log x | π(x)/x / log x | li(x) − π(x) | x/π(x) |
10 | 4 | −0.3 | 0.921 | 2.2 | 2.500 |
102 | 25 | 3.3 | 1.151 | 5.1 | 4.000 |
103 | 168 | 23.0 | 1.161 | 10.0 | 5.952 |
104 | 7003122900000000000♠1229 | 143.0 | 1.132 | 17.0 | 8.137 |
105 | 7003959200000000000♠9592 | 906.0 | 1.104 | 38.0 | 10.425 |
106 | 7004784980000000000♠78498 | 7003611600000000000♠6116.0 | 1.084 | 130.0 | 12.740 |
107 | 7005664579000000000♠664579 | 7004441580000000000♠44158.0 | 1.071 | 339.0 | 15.047 |
108 | 7006576145500000000♠5761455 | 7005332774000000000♠332774.0 | 1.061 | 754.0 | 17.357 |
109 | 7007508475340000000♠50847534 | 7006259259200000000♠2592592.0 | 1.054 | 7003170100000000000♠1701.0 | 19.667 |
1010 | 7008455052511000000♠455052511 | 7007207580290000000♠20758029.0 | 1.048 | 7003310400000000000♠3104.0 | 21.975 |
1011 | 7009411805481300000♠4118054813 | 7008169923159000000♠169923159.0 | 1.043 | 7004115880000000000♠11588.0 | 24.283 |
1012 | 7010376079120180000♠37607912018 | 7009141670519300000♠1416705193.0 | 1.039 | 7004382630000000000♠38263.0 | 26.590 |
1013 | 7011346065536839000♠346065536839 | 7010119928584520000♠11992858452.0 | 1.034 | 7005108971000000000♠108971.0 | 28.896 |
1014 | 7012320494175080200♠3204941750802 | 7011102838308636000♠102838308636.0 | 1.033 | 7005314890000000000♠314890.0 | 31.202 |
1015 | 7013298445704226690♠29844570422669 | 7011891604962452000♠891604962452.0 | 1.031 | 7006105261900000000♠1052619.0 | 33.507 |
1016 | 7014279238341033925♠279238341033925 | 7012780428984439300♠7804289844393.0 | 1.029 | 7006321463200000000♠3214632.0 | 35.812 |
1017 | 7015262355715765423♠2623557157654233 | 7013688837346932810♠68883734693281.0 | 1.027 | 7006795658900000000♠7956589.0 | 38.116 |
1018 | 7016247399542877408♠24739954287740860 | 7014612483070893536♠612483070893536.0 | 1.025 | 7007219495550000000♠21949555.0 | 40.420 |
1019 | 7017234057667276344♠234057667276344607 | 7015548162416936996♠5481624169369960.0 | 1.024 | 7007998777750000000♠99877775.0 | 42.725 |
1020 | 7018222081960256091♠2220819602560918840 | 7016493471930446597♠49347193044659701.0 | 1.023 | 7008222744644000000♠222744644.0 | 45.028 |
1021 | 7019211272694860187♠21127269486018731928 | 7017446579871578168♠446579871578168707.0 | 1.022 | 7008597394254000000♠597394254.0 | 47.332 |
1022 | 7020201467286689315♠201467286689315906290 | 7018406070400601962♠4060704006019620994.0 | 1.021 | 7009193235520800000♠1932355208.0 | 49.636 |
1023 | 7021192532039160680♠1925320391606803968923 | 7019370835137665786♠37083513766578631309.0 | 1.020 | 7009725018621600000♠7250186216.0 | 51.939 |
1024 | 7022184355997673492♠18435599767349200867866 | 7020339996354713708♠339996354713708049069.0 | 1.019 | 7010171469072780000♠17146907278.0 | 54.243 |
1025 | 7023176846309399143♠176846309399143769411680 | 7021312851663784303♠3128516637843038351228.0 | 1.018 | 7010551609809390000♠55160980939.0 | 56.546 |
OEIS | A006880 | A057835 | | A057752 | |
The value for
π(1024) was originally computed assuming the
Riemann hypothesis;
[28] it has since been verified unconditionally.
[29]
Analogue for irreducible polynomials over a finite field[edit]
There is an analogue of the prime number theorem that describes the "distribution" of
irreducible polynomials over a
finite field; the form it takes is strikingly similar to the case of the classical prime number theorem.
To state it precisely, let
F = GF(q) be the finite field with
q elements, for some fixed
q, and
No comments:
Post a Comment