Thursday, March 1, 2018

A 15 year old or so F Gauss saw a pattern in the distribution of primes.......while a "good ball park figure"..........if that wasn't a code.......I don't know what would be......but anyways...............it was overall a decent average......but locally irregular..............while the denominator goes up by one..............the fraction goes down.............b/c it is a inverse relationship.............1/4 is smaller numerically than 1/2..............1/2 = 0.5 and 1/4 = 0.25....................50 cents is more than 25 cents.................................and while the denominator goes up (the number on the bottom).........uniformly one fraction to the next..........by ones...............the values go down.................erratically.............


Table of π(x), x / log x, and li(x)[edit]

The table compares exact values of π(x) to the two approximations x / log x and li(x). The last column, x / π(x), is the average prime gap below x.
xπ(x)π(x) − x/log xπ(x)/x / log xli(x) − π(x)x/π(x)
104−0.30.9212.22.500
102253.31.1515.14.000
10316823.01.16110.05.952
1041229143.01.13217.08.137
1059592906.01.10438.010.425
106784986116.01.084130.012.740
10766457944158.01.071339.015.047
1085761455332774.01.061754.017.357
109508475342592592.01.0541701.019.667
101045505251120758029.01.0483104.021.975
10114118054813169923159.01.04311588.024.283
1012376079120181416705193.01.03938263.026.590
101334606553683911992858452.01.034108971.028.896
10143204941750802102838308636.01.033314890.031.202
101529844570422669891604962452.01.0311052619.033.507
10162792383410339257804289844393.01.0293214632.035.812
1017262355715765423368883734693281.01.0277956589.038.116
101824739954287740860612483070893536.01.02521949555.040.420
10192340576672763446075481624169369960.01.02499877775.042.725
1020222081960256091884049347193044659701.01.023222744644.045.028
102121127269486018731928446579871578168707.01.022597394254.047.332
10222014672866893159062904060704006019620994.01.0211932355208.049.636
1023192532039160680396892337083513766578631309.01.0207250186216.051.939
102418435599767349200867866339996354713708049069.01.01917146907278.054.243
10251768463093991437694116803128516637843038351228.01.01855160980939.056.546
OEISA006880A057835A057752
The value for π(1024) was originally computed assuming the Riemann hypothesis;[28] it has since been verified unconditionally.[29]

Analogue for irreducible polynomials over a finite field[edit]

There is an analogue of the prime number theorem that describes the "distribution" of irreducible polynomials over a finite field; the form it takes is strikingly similar to the case of the classical prime number theorem.
To state it precisely, let F = GF(q) be the finite field with q elements, for some fixed q, and

No comments:

Post a Comment