Monday, August 13, 2018

Set theory as well..........b/c the 1st 18 .....is at 4.............4 - 7.............4 + 7 = 11.....some tables have 4 - 6...........as the full 18........as in continuous....................4 + 6 = 10...........4 + 7 = 11..........11/10.....the 5th term of Euler's product with a s of 1.........

2(3/2)(5/4)(7/6)(11/10).........the 1st 5 terms of Euler's product with a s of 1................5/4 is like a vertical..........45...going from bottom up.........7/6 and 11/10 are the 4th and 5th respectively......just like 459045.............11 - 16 th numbers in e...............and a fractal e....b/c 11 + 16 = 27...........horizontals and verticals.........7 down...a vertical.....m = undef or infinity of a vertical line...........m = 0 on a horizontal line...................a rectangle missing a piece.....like a Riemann sphere.....a ball........3d circle...a sphere...with a hole at the top.....................some have 6 down..some have 7 down.....in the "main" part of the periodic table..like 7/6 for Euler's product.....i bet b/c the actual answer varies..............the number of elements in nature is not fixed......it depends...it varies......and some are man made or alien made.....nature makes some...........the idiotic mad scientists make some.......most things are relative.....Dr. Einstein......



Overview

hide
Group123 456789101112131415161718
Alkali metalsAlkaline earth metalsPnicto­gensChal­co­gensHalo­gensNoble gases
Period
1
Hydro­gen1H1.008He­lium2He4.0026
2Lith­ium3Li6.94Beryl­lium4Be9.0122Boron5B10.81Carbon6C12.011Nitro­gen7N14.007Oxy­gen8O15.999Fluor­ine9F18.998Neon10Ne20.180
3So­dium11Na22.990Magne­sium12Mg24.305Alumin­ium13Al26.982Sili­con14Si28.085Phos­phorus15P30.974Sulfur16S32.06Chlor­ine17Cl35.45Argon18Ar39.948
4Potas­sium19K39.098Cal­cium20Ca40.078Scan­dium21Sc44.956Tita­nium22Ti47.867Vana­dium23V50.942Chrom­ium24Cr51.996Manga­nese25Mn54.938Iron26Fe55.845Cobalt27Co58.933Nickel28Ni58.693Copper29Cu63.546Zinc30Zn65.38Gallium31Ga69.723Germa­nium32Ge72.630Arsenic33As74.922Sele­nium34Se78.971Bromine35Br79.904Kryp­ton36Kr83.798
5Rubid­ium37Rb85.468Stront­ium38Sr87.62Yttrium39Y88.906Zirco­nium40Zr91.224Nio­bium41Nb92.906Molyb­denum42Mo95.95Tech­netium43Tc​[98]Ruthe­nium44Ru101.07Rho­dium45Rh102.91Pallad­ium46Pd106.42Silver47Ag107.87Cad­mium48Cd112.41Indium49In114.82Tin50Sn118.71Anti­mony51Sb121.76Tellur­ium52Te127.60Iodine53I126.90Xenon54Xe131.29
6Cae­sium55Cs132.91Ba­rium56Ba137.33Lan­thanum57La138.911 asteriskHaf­nium72Hf178.49Tanta­lum73Ta180.95Tung­sten74W183.84Rhe­nium75Re186.21Os­mium76Os190.23Iridium77Ir192.22Plat­inum78Pt195.08Gold79Au196.97Mer­cury80Hg200.59Thallium81Tl204.38Lead82Pb207.2Bis­muth83Bi208.98Polo­nium84Po​[209]Asta­tine85At​[210]Radon86Rn​[222]
7Fran­cium87Fr​[223]Ra­dium88Ra​[226]Actin­ium89Ac​[227]1 asteriskRuther­fordium104Rf​[267]Dub­nium105Db​[268]Sea­borgium106Sg​[269]Bohr­ium107Bh​[270]Has­sium108Hs​[270]Meit­nerium109Mt​[278]Darm­stadtium110Ds​[281]Roent­genium111Rg​[282]Coper­nicium112Cn​[285]Nihon­ium113Nh​[286]Flerov­ium114Fl​[289]Moscov­ium115Mc​[290]Liver­morium116Lv​[293]Tenness­ine117Ts​[294]Oga­nesson118Og​[294]
1 asteriskCerium58Ce140.12Praseo­dymium59Pr140.91Neo­dymium60Nd144.24Prome­thium61Pm​[145]Sama­rium62Sm150.36Europ­ium63Eu151.96Gadolin­ium64Gd157.25Ter­bium65Tb158.93Dyspro­sium66Dy162.50Hol­mium67Ho164.93Erbium68Er167.26Thulium69Tm168.93Ytter­bium70Yb173.05Lute­tium71Lu174.97 
1 asteriskThor­ium90Th232.04Protac­tinium91Pa231.04Ura­nium92U238.03Neptu­nium93Np​[237]Pluto­nium94Pu​[244]Ameri­cium95Am​[243]Curium96Cm​[247]Berkel­ium97Bk​[247]Califor­nium98Cf​[251]Einstei­nium99Es​[252]Fer­mium100Fm​[257]Mende­levium101Md​[258]Nobel­ium102No​[259]Lawren­cium103Lr​[266]
Each chemical element has a unique atomic number (Z) representing the number of protons in its nucleus.[n 2] Most elements have differing numbers of neutrons among different atoms, with these variants being referred to as isotopes. For example, carbon has three naturally occurring isotopes: all of its atoms have six protons and most have six neutrons as well, but about one per cent have seven neutrons, and a very small fraction have eight neutrons. Isotopes are never separated in the periodic table; they are always grouped together under a single element. Elements with no stable isotopes have the atomic masses of their most stable isotopes, where such masses are shown, listed in parentheses.[6]
In the standard periodic table, the elements are listed in order of increasing atomic number Z (the number of protons in the nucleus of an atom). A new row (period) is started when a new electron shell has its first electron. Columns (groups) are determined by the electron configuration of the atom; elements with the same number of electrons in a particular subshell fall into the same columns (e.g. oxygen and selenium are in the same column because they both have four electrons in the outermost p-subshell). Elements with similar chemical properties generally fall into the same group in the periodic table, although in the f-block, and to some respect in the d-block, the elements in the same period tend to have similar properties, as well. Thus, it is relatively easy to predict the chemical properties of an element if one knows the properties of the elements around it.[7]

No comments:

Post a Comment