The distribution of such prime numbers among all natural numbers does not follow any regular pattern. However, the German mathematician G.F.B. Riemann (1826 - 1866) observed that the frequency of prime numbers is very closely related to the behavior of an elaborate function
ζ(s) = 1 + 1/2s + 1/3s + 1/4s + ...
called the Riemann Zeta function. The Riemann hypothesis asserts that all interesting solutions of the equation
ζ(s) = 0
lie on a certain vertical straight line.
This has been checked for the first 10,000,000,000 solutions. A proof that it is true for every interesting solution would shed light on many of the mysteries surrounding the distribution of prime numbers.
No comments:
Post a Comment