Tuesday, December 22, 2015

Reiman and others............were mainly interested in finding primes.......which are very useful..........for encryption and other stuff.....


The Largest Known Primes--A Summary

(A historic Prime Page resource since 1994!)
Last modified: 01:20:25 PM Tuesday December 22 2015 UTC
Our book "Prime Curios! The Dictionary of Prime Number Trivia" is now available on CreateSpaceAmazon, ....

Contents:

  1. Introduction (What are primes? Who cares?)
  2. The Top Ten Record Primes:
        largesttwinMersenneprimorial & factorial, and Sophie Germain
  3. The Complete List of the Largest Known Primes
  4. Other Sources of Prime Information
  5. Euclid's Proof of the Infinitude of Primes


Primes: [ Home || Largest | Proving | How Many? | Mersenne | Glossary | Mailing List ]


site awards

Note: The correct URL for this page is http://primes.utm.edu/largest.html. The site The Top Twenty is a greatly expanded version of this information. This page summarizes the information on the list of 5000 Largest Known Primes (updated hourly).  The complete list of is available inseveral forms.

[up]   1. Introduction

An integer greater than one is called a prime number if its only positive divisors (factors) are one and itself.  For example, the prime divisors of 10 are 2 and 5; and the first six primes are 2, 3, 5, 7, 11 and 13.  (The first 10,000, and other lists are available).  The Fundamental Theorem of Arithmetic shows that the primes are the building blocks of the positive integers: every positive integer is a product of prime numbers in one and only one way, except for the order of the factors. (This is the key to their importance: the prime factors of an integer determines its properties.)
The ancient Greeks proved (ca 300 BC) that there were infinitely many primes and that they were irregularly spaced (there can be arbitrarily large gaps between successive primes).  On the other hand, in the nineteenth century it was shown that the number of primes less than or equal to n approaches n/(log n) (as n gets very large); so a rough estimate for the nth prime is n log n (see the document "How many primes are there?")
The Sieve of Eratosthenes is still the most efficient way of finding all very small primes (e.g., those less than 1,000,000).  However, most of the largest primes are found using special cases of Lagrange's Theorem from group theory.  See the separate documents on proving primality for more information.
In 1984 Samuel Yates defined a titanic prime to be any prime with at least 1,000 digits [Yates84Yates85].  When he introduced this term there were only 110 such primes known; now there are over 1000 times that many!  And as computers and cryptology continually give new emphasis to search for ever larger primes, this number will continue to grow.   Before long we expect to see the first twenty-five million digit prime.
If you want to understand a building, how it will react to weather or fire, you first need to know what it is made of. The same is true for the integers--most of their properties can be traced back to what they are made of: their prime factors. For example, in Euclid's Geometry (over 2,000 years ago), Euclid studied even perfect numbers and traced them back to what we now call Mersenne primes.
The problem of distinguishing prime numbers from composite numbers and of resolving the latter into their prime factors is known to be one of the most important and useful in arithmetic.  It has engaged the industry and wisdom of ancient and modern geometers to such an extent that it would be superfluous to discuss the problem at length...  Further, the dignity of the science itself seems to require that every possible means be explored for the solution of a problem so elegant and so celebrated. (Carl Friedrich GaussDisquisitiones Arithmeticae, 1801)
See the FAQ for more infrmation on why we collect these large primes!

[up]   2. The "Top Ten" Record Primes

The Ten Largest Known PrimesSee also the page: The top 20: largest known primes.
The largest known prime has almost always been a Mersenne prime.  Why Mersennes?  Because the way the largest numbers N are proven primeis based on the factorizations of either N+1 or N-1, and for Mersennes the factorization of N+1 is as trivial as possible (a power of two). The Great Internet Mersenne Prime Search (GIMPS) was launched by George Woltman in early 1996, and has had a virtual lock on the largest known prime since then.  This is because its excellent free software is easy to install and maintain, requiring little of the user other than watch and see if they find the next big one and maybe win some EFF prize money!
Any record in this list of the top ten is a testament to the incredible amount of work put in by the programmers, project directors (GIMPS, Seventeen or Bust, Generalized Fermat Search...), and the tens of thousands of enthusiasts!

rankprimedigitswhowhenreference
1257885161-117425170G132013Mersenne 48??
2243112609-112978189G102008Mersenne 47??
3242643801-112837064G122009Mersenne 46??
4237156667-111185272G112008Mersenne 45?
5232582657-19808358G92006Mersenne 44
6230402457-19152052G92005Mersenne 43
7225964951-17816230G82005Mersenne 42
8224036583-17235733G72004Mersenne 41
9220996011-16320430G62003Mersenne 40
10213466917-14053946G52001Mersenne 39
      
Click here to see the one hundred largest known primes. You might also be interested in seeing the graph of the size of record primes by year:throughout history or just in the last decade
The Ten Largest Known Twin PrimesSee also the page: The top 20: twin primes,
and the glossary entry: twin primes.
Twin primes are primes of the form p and p+2, i.e., they differ by two.  It is conjectured, but not yet proven, that there are infinitely many twin primes (the same is true for all of the following forms of primes).  Because discovering a twin prime actually involves finding two primes, the largest known twin primes are substantially smaller than the largest known primes of most other forms.
rankprimedigitswhowhenreference
13756801695685·2666669+1200700L19212011Twin (p+2)
23756801695685·2666669-1200700L19212011Twin (p)
365516468355·2333333+1100355L9232009Twin (p+2)
465516468355·2333333-1100355L9232009Twin (p)
54884940623·2198800+159855L41662015Twin (p+2)
64884940623·2198800-159855L41662015Twin (p)
72003663613·2195000+158711L2022007Twin (p+2)
82003663613·2195000-158711L2022007Twin (p)
938529154785·2173250+152165L34942014Twin (p+2)
1038529154785·2173250-152165L34942014Twin (p)
      
Click here to see all of the twin primes on the list of the Largest Known Primes.
Note: The idea of prime twins can be generalized to prime triplets, quadruplets; and more generally, prime k-tuplets.  Tony Forbes keeps a page listing these records
The Ten Largest Known Mersenne PrimesSee also the pages: The top 20: Mersenne primes,
and Mersenne primes (history, theorems and lists).
Mersenne primes are primes of the form 2p-1.  These are the easiest type of number to check for primality on a binary computer so they usually are also the largest primes known.  GIMPS is steadily finding these behemoths!
rankprimedigitswhowhenreference
1257885161-117425170G132013Mersenne 48??
2243112609-112978189G102008Mersenne 47??
3242643801-112837064G122009Mersenne 46??
4237156667-111185272G112008Mersenne 45?
5232582657-19808358G92006Mersenne 44
6230402457-19152052G92005Mersenne 43
7225964951-17816230G82005Mersenne 42
8224036583-17235733G72004Mersenne 41
9220996011-16320430G62003Mersenne 40
10213466917-14053946G52001Mersenne 39
      
See our page on Mersenne numbers for more information including a complete table of the known Mersennes.  You can also help fill in the gap by joining the Great Internet Mersenne Prime Search.
The Ten Largest Known Factorial/Primorial PrimesSee also: The top 20: primorial and factorial primes,
and the glossary entries: primorialfactorial.
Euclid's proof that there are infinitely many primes uses numbers of the form n#+1.   Kummer's proof uses those of the form n#-1.  Sometimes students look at these proofs and assume the numbers n#+/-1 are always prime, but that is not so.  When numbers of the form n#+/-1 are prime they are called primorial primes.  Similarly numbers of the form n!+/-1 are called factorial primes.  The current record holders and their discoverers are:
rankprimedigitswhowhenreference
11098133#-1476311p3462012Primorial
2843301#-1365851p3022010Primorial
3392113#+1169966p162001Primorial
4366439#+1158936p162001Primorial
5145823#+163142p212000Primorial
642209#+118241p81999Primorial
724029#+110387C1993Primorial
823801#+110273C1993Primorial
918523#+18002D1989Primorial
1015877#-16845CD1992Primorial
      

rankprimedigitswhowhenreference
1150209!+1712355p32011Factorial
2147855!-1700177p3622013Factorial
3110059!+1507082p3122011Factorial
4103040!-1471794p3012010Factorial
594550!-1429390p2902010Factorial
634790!-1142891p852002Factorial
726951!+1107707p652002Factorial
821480!-183727p652001Factorial
96917!-123560g11998Factorial
106380!+121507g11998Factorial
      
Click here to see all of the known primorial, factorial and multifactorial primes on the list of the largest known primes.
The Ten Largest Known Sophie Germain PrimesSee also the page: The top 20: Sophie Germain,
and the glossary entry: Sophie Germain Prime.
Sophie Germain prime is an odd prime p for which 2p+1 is also a prime.  These were named after Sophie Germain when she proved that the first case of Fermat's Last Theorem (xn+yn=zn has no solutions in non-zero integers for n>2) for exponents divisible by such primes.  Fermat's Last theorem has now been proved completely by Andrew Wiles.
rankprimedigitswhowhenreference
118543637900515·2666667-1200701L24292012Sophie Germain (p)
2183027·2265440-179911L9832010Sophie Germain (p)
3648621027630345·2253824-176424x242009Sophie Germain (p)
4620366307356565·2253824-176424x242009Sophie Germain (p)
5607095·2176311-153081L9832009Sophie Germain (p)
648047305725·2172403-151910L992007Sophie Germain (p)
7137211941292195·2171960-151780x242006Sophie Germain (p)
831737014565·2140003-142156L952010Sophie Germain (p)
914962863771·2140001-142155L952010Sophie Germain (p)
1033759183·2123458-137173L5272009Sophie Germain (p)
      
Click here to see all of the Sophie Germain primes on the list of Largest Known Primes.


[up]   3. Other Sources of Large Primes

Because of the lag time between writing and printing, books can never keep up with the current prime records (that is why this page exists!)  However books can provide the mathematical theory behind these records much better than a limited series of web pages can.  Recently there have been quite a number of excellent books published on primes and primality proving.  Here are some of my favorite:
  • P. RibenboimThe new book of prime number records, 3rd edition, Springer-Verlag, New York, 1995. (QA246 .R472).
  • P. RibenboimThe little book of bigger primes, Springer-Verlag, New York, 2004.  (A less mathematical version of the above text.)
  • H. RieselPrime numbers and computer methods for factorization, Progress in Mathematics volume 126, Birkäuser Boston, 1994.
  • R. Crandall and C. PomerancePrime numbers: a computational perspective, Springer-Verlag, New York, 2001.  ISBN 0-387-94777-9.
See also [Bressoud89] and [Cohen93] on the page of partially annotated prime references.  Also of interest is the Cunningham Project, an effort to factor the numbers in the title of the following book.
  • J. Brillhart, et al., Factorizations of bn±1 b = 2,3,5,6,7,10,11,12 up to high powers , American Mathematical Society, 1988 [BLSTW88].

No comments:

Post a Comment