Saturday, September 16, 2017

The radius is the defining feature of the circle............that and the point u start from..........the center........2 and one...........1/2 or 2/1............................


Fundamentals

Name

The symbol used by mathematicians to represent the ratio of a circle's circumference to its diameter is the lowercase Greek letter π, sometimes spelled out as pi, and derived from the first letter of the Greek word perimetros, meaning circumference.[6] In English, π is pronounced as "pie" (/p/, paɪ).[7] In mathematical use, the lowercase letter π (or π in sans-serif font) is distinguished from its capitalized and enlarged counterpart , which denotes a product of a sequence, analogous to how denotes summation.
The choice of the symbol π is discussed in the section Adoption of the symbol π.

Definition

A diagram of a circle, with the width labeled as diameter, and the perimeter labeled as circumference
The circumference of a circle is slightly more than three times as long as its diameter. The exact ratio is called π.
π is commonly defined as the ratio of a circle's circumference C to its diameter d:[8]
The ratio C/d is constant, regardless of the circle's size. For example, if a circle has twice the diameter of another circle it will also have twice the circumference, preserving the ratio C/d. This definition of π implicitly makes use of flat (Euclidean) geometry; although the notion of a circle can be extended to any curved (non-Euclidean) geometry, these new circles will no longer satisfy the formula π = C/d.[8] Here, the circumference of a circle is the arc length around the perimeter of the circle, a quantity which can be formally defined independently of geometry using limits, a concept in calculus.[9] For example, one may compute directly the arc length of the top half of the unit circle given in Cartesian coordinates by x2 + y2 = 1, as the integral:[10]
An integral such as this was adopted as the definition of π by Karl Weierstrass, who defined it directly as an integral in 1841.[11]

No comments:

Post a Comment