Saturday, September 16, 2017

They say 2 to the x........................when fed imaginary numbers produce musical notes.....................



Sums of waves........a crest meeting a trough would cancel each other out.........


The plots above show the real and imaginary parts of zeta(s) plotted in the complex plane together with the complex modulus of zeta(z). As can be seen, in right half-plane, the function is fairly flat, but with a large number of horizontal ridges. It is precisely along these ridges that the nontrivial zeros of zeta(s) lie. RiemannZetaZerosContoursReIm
The position of the complex zeros can be seen slightly more easily by plotting the contours of zero real (red) and imaginary (blue) parts, as illustrated above. The zeros (indicated as black dots) occur where the curves intersect.

No comments:

Post a Comment